metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-acetyl-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O, O'$)bis(*N*,*N*-dimethylformamide- κO)nickel(II)

Hualing Zhu,* Zhen Wei, Luxia Bu, Xiaoping Xu and Jun Shi

Department of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No 22, Tianjin 300384, People's Republic of China Correspondence e-mail: zhuhualing2004@126.com

Received 29 June 2010; accepted 3 July 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.078; data-to-parameter ratio = 12.6.

The title complex, $[Ni(C_{12}H_{11}N_2O_2)_2(C_3H_7NO)_2]$, lies on on an inversion center. The Ni^{II} ion is coordinated in a slightly distorted octahedral coordination environment by four O atoms from two bis-chelating 4-acety-3-methyl-1-phenyl-1*H*pyrazol-5-olate ligands in the equatorial plane and two O atoms from two *N*,*N*-dimethylformamide ligands in the axial sites. In the crystal structure, weak intermolecular π - π stacking interactions with centroid–centroid distances of 3.7467 (13) Å link molecules into chains extending alongthe *b* axis.

Related literature

For related structures: Shi *et al.* (2005); Zhu *et al.* (2010*a*,*b*, 2005).

Experimental

Crystal data

[Ni(C₁₂H₁₁N₂O₂)₂(C₃H₇NO)₂] $M_r = 635.36$ Monoclinic, P_{2_1}/n a = 8.7201 (17) Å b = 17.119 (3) Å c = 9.852 (2) Å $\beta = 101.56$ (3)°

 $V = 1440.9 \text{ (5) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.73 \text{ mm}^{-1}$ T = 113 K $0.20 \times 0.18 \times 0.10 \text{ mm}$

10320 measured reflections

 $R_{\rm int} = 0.031$

2529 independent reflections

2279 reflections with $I > 2\sigma(I)$

Data collection

Rigaku Saturn CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{min} = 0.868, T_{max} = 0.931$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ 200 parameters $wR(F^2) = 0.078$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.32$ e Å⁻³2529 reflections $\Delta \rho_{min} = -0.58$ e Å⁻³

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science Development Committee of Tianjin Agricultural College (research grant No. 2007029) and the Doctor Degree Fund Commission of Tianjin Agricultural College (No. 2007027) for partial funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5075).

References

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320– m2321.
- Zhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010b). Acta Cryst. E66, o1583.
- Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010a). Acta Cryst. E66, o1352.
- Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, 02387–02388.

supplementary materials

Acta Cryst. (2010). E66, m904 [doi:10.1107/S1600536810026231]

Bis(4-acetyl-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O, O'$)bis(*N*,*N*-dimethylformamide- κO)nickel(II)

H. Zhu, Z. Wei, L. Bu, X. Xu and J. Shi

Comment

As part of our onging studies of pyrazolone derivatives as potential ligands (Zhu *et al.*, 2005; 2010a,b) we report the structure of the title complex, (I).

The molecular structure of the title complex is shown in Fig. 1. The Ni^{II} ion lies on a crystallographic inversion centre and adopts a slightly distorted octahedral coordination environment provided by four O atoms from two 4-acety-3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)- onato ligands in the equatorial plane two O atoms from two *N*,*N*-bimethylformamide ligands in the axial sites. A related complex has previously been published (Shi *et al.*, 2005). In the crystal structure, weak intermolecular π - π stacking interactions involving the pyrazole rings, with centroid to centroid distances of 3.7467 (13)Å link molecules into one-dimensional chains (Fig 2).

Experimental

The title compound was synthesized by dropping a nickel acetate (5m mol) ethanolic solution into an ethanolic solution of 4-acetyl-3-methyl-1-phenyl-1H-pyrazolone-5 (10m mol) and stirring for about 2 h under room temperature. The green blocks which were obtained were dried in air. The product was recrystallized from *N*,*N*-dimethylformamide which afforded crystals suitable for *X*-ray analysis.

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å or 0.98 Å for the methyl H atoms and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius (symmetry code: (i) -x+1, -y+2, -z+1).

Fig. 2. Part of the crystal structure showing intermolecular π - π interactions as dashed lines.

Bis(4-acetyl-3-methyl-1-phenyl-1*H*-pyrazol-5-olato- $\kappa^2 O$, O') bis(N, N-dimethylformamide- κO) nickel(II)

F(000) = 668

 $\theta = 2.4 - 27.9^{\circ}$

 $\mu = 0.73 \text{ mm}^{-1}$

T = 113 K

Block, green

 $0.20\times0.18\times0.10~mm$

 $D_{\rm x} = 1.464 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4482 reflections

Crystal data

[Ni(C₁₂H₁₁N₂O₂)₂(C₃H₇NO)₂] $M_r = 635.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.7201 (17) Å b = 17.119 (3) Å c = 9.852 (2) Å $\beta = 101.56 (3)^\circ$ $V = 1440.9 (5) \text{ Å}^3$ Z = 2

Data collection

Rigaku Saturn CCD diffractometer	2529 independent reflections
Radiation source: rotating anode	2279 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.031$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ω and ϕ scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)	$k = -19 \rightarrow 20$
$T_{\min} = 0.868, \ T_{\max} = 0.931$	$l = -11 \rightarrow 11$
10320 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.078$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.048P)^{2} + 0.3836P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2529 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
200 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	1.0000	0.5000	0.01056 (12)
01	0.58951 (13)	1.05337 (7)	0.68398 (11)	0.0138 (3)
O2	0.41750 (13)	0.91066 (7)	0.60044 (12)	0.0145 (3)
03	0.71254 (13)	0.94193 (7)	0.51507 (12)	0.0147 (3)
N1	0.71370 (16)	1.03649 (8)	0.91454 (14)	0.0136 (3)
N2	0.73040 (17)	0.97910 (9)	1.01841 (15)	0.0167 (3)
N3	0.92677 (16)	0.91367 (8)	0.42588 (15)	0.0141 (3)
C1	0.62073 (19)	1.01164 (9)	0.79249 (18)	0.0121 (4)
C2	0.57338 (19)	0.93439 (10)	0.82039 (18)	0.0134 (4)
C3	0.64609 (19)	0.91963 (10)	0.96176 (18)	0.0153 (4)
C4	0.6431 (2)	0.84786 (11)	1.04694 (19)	0.0208 (4)
H4A	0.7047	0.8567	1.1404	0.031*
H4B	0.6880	0.8041	1.0040	0.031*
H4C	0.5348	0.8356	1.0525	0.031*
C5	0.46612 (18)	0.88950 (10)	0.72430 (17)	0.0124 (4)
C6	0.4005 (2)	0.81431 (10)	0.76739 (18)	0.0185 (4)
H6A	0.3372	0.7888	0.6860	0.028*
H6B	0.3348	0.8254	0.8350	0.028*
H6C	0.4865	0.7797	0.8092	0.028*
C7	0.79488 (19)	1.10812 (10)	0.94735 (17)	0.0134 (4)
C8	0.74278 (19)	1.17723 (10)	0.87719 (17)	0.0145 (4)
H8	0.6550	1.1766	0.8025	0.017*
C9	0.8205 (2)	1.24649 (10)	0.91776 (18)	0.0177 (4)
Н9	0.7846	1.2936	0.8709	0.021*
C10	0.9504 (2)	1.24833 (11)	1.02602 (19)	0.0206 (4)
H10	1.0017	1.2963	1.0544	0.025*
C11	1.0036 (2)	1.17911 (11)	1.09167 (18)	0.0212 (4)
H11	1.0938	1.1795	1.1640	0.025*
C12	0.9269 (2)	1.10923 (10)	1.05317 (18)	0.0174 (4)
H12	0.9646	1.0621	1.0990	0.021*
C13	0.78377 (19)	0.94216 (10)	0.41739 (18)	0.0138 (4)
H13	0.7326	0.9641	0.3316	0.017*
C14	1.0109 (2)	0.87896 (11)	0.5542 (2)	0.0208 (4)
H14A	0.9697	0.8998	0.6323	0.031*
H14B	1.1225	0.8916	0.5665	0.031*
H14C	0.9973	0.8221	0.5500	0.031*
C15	1.0048 (2)	0.91441 (11)	0.30838 (19)	0.0210 (4)
H15A	0.9379	0.9406	0.2298	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15B	1.0247	0.8606	0.2826	0.031*
H15C	1.1044	0.9425	0.3337	0.031*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01054 (17)	0.01073 (18)	0.00993 (18)	0.00035 (11)	0.00088 (12)	-0.00072 (11)
01	0.0168 (6)	0.0137 (6)	0.0102 (6)	-0.0004 (5)	0.0011 (5)	0.0003 (5)
02	0.0146 (6)	0.0137 (6)	0.0149 (7)	-0.0005 (4)	0.0023 (5)	-0.0013 (5)
03	0.0136 (6)	0.0163 (6)	0.0145 (6)	0.0012 (5)	0.0035 (5)	-0.0007 (5)
N1	0.0177 (7)	0.0117 (8)	0.0104 (7)	-0.0010 (6)	0.0008 (6)	0.0010 (6)
N2	0.0196 (8)	0.0168 (8)	0.0123 (8)	-0.0003 (6)	-0.0004 (6)	0.0034 (6)
N3	0.0129 (7)	0.0145 (8)	0.0150 (7)	0.0012 (5)	0.0031 (6)	0.0008 (6)
C1	0.0097 (8)	0.0145 (9)	0.0122 (9)	0.0020 (6)	0.0022 (6)	-0.0020(7)
C2	0.0131 (8)	0.0122 (9)	0.0149 (9)	0.0014 (6)	0.0028 (7)	0.0009 (7)
C3	0.0145 (8)	0.0154 (9)	0.0158 (9)	0.0002 (7)	0.0028 (7)	0.0003 (7)
C4	0.0226 (9)	0.0202 (10)	0.0177 (9)	-0.0033 (7)	-0.0006 (7)	0.0049 (8)
C5	0.0113 (8)	0.0128 (8)	0.0134 (9)	0.0039 (6)	0.0032 (7)	-0.0016 (7)
C6	0.0221 (9)	0.0156 (9)	0.0173 (9)	-0.0041 (7)	0.0030 (7)	-0.0005 (7)
C7	0.0147 (8)	0.0157 (9)	0.0106 (8)	-0.0015 (7)	0.0048 (7)	-0.0027 (7)
C8	0.0133 (8)	0.0163 (9)	0.0137 (9)	0.0001 (6)	0.0019 (7)	-0.0011 (7)
C9	0.0207 (9)	0.0152 (9)	0.0180 (9)	-0.0005 (7)	0.0060 (7)	0.0020 (7)
C10	0.0246 (9)	0.0190 (10)	0.0182 (10)	-0.0090 (8)	0.0039 (8)	-0.0015 (8)
C11	0.0196 (9)	0.0264 (11)	0.0151 (9)	-0.0068 (7)	-0.0024 (7)	0.0000 (8)
C12	0.0190 (9)	0.0170 (9)	0.0155 (9)	-0.0010 (7)	0.0018 (7)	0.0022 (7)
C13	0.0141 (8)	0.0104 (8)	0.0153 (9)	0.0000 (6)	-0.0010 (7)	-0.0010(7)
C14	0.0160 (9)	0.0217 (10)	0.0234 (10)	0.0037 (7)	0.0007 (7)	0.0068 (8)
C15	0.0191 (9)	0.0236 (10)	0.0219 (10)	-0.0001(7)	0.0083 (8)	-0.0008 (8)

Geometric parameters (Å, °)

2.0301 (12)	C5—C6	1.504 (2)
2.0301 (12)	С6—Н6А	0.9800
2.0402 (12)	С6—Н6В	0.9800
2.0402 (12)	С6—Н6С	0.9800
2.0820 (12)	C7—C12	1.390 (3)
2.0820 (12)	С7—С8	1.399 (2)
1.269 (2)	C8—C9	1.384 (2)
1.262 (2)	С8—Н8	0.9500
1.246 (2)	C9—C10	1.392 (3)
1.376 (2)	С9—Н9	0.9500
1.405 (2)	C10-C11	1.385 (3)
1.420 (2)	C10—H10	0.9500
1.313 (2)	C11—C12	1.386 (3)
1.326 (2)	C11—H11	0.9500
1.455 (2)	C12—H12	0.9500
1.456 (2)	С13—Н13	0.9500
1.428 (2)	C14—H14A	0.9800
	2.0301 (12) 2.0301 (12) 2.0402 (12) 2.0402 (12) 2.0820 (12) 2.0820 (12) 1.269 (2) 1.262 (2) 1.246 (2) 1.376 (2) 1.405 (2) 1.420 (2) 1.313 (2) 1.326 (2) 1.455 (2) 1.456 (2) 1.428 (2)	2.0301 (12) $C5-C6$ $2.0301 (12)$ $C6-H6A$ $2.0402 (12)$ $C6-H6B$ $2.0402 (12)$ $C6-H6C$ $2.0820 (12)$ $C7-C12$ $2.0820 (12)$ $C7-C8$ $1.269 (2)$ $C8-C9$ $1.262 (2)$ $C8-H8$ $1.246 (2)$ $C9-C10$ $1.376 (2)$ $C9-H9$ $1.405 (2)$ $C10-C11$ $1.313 (2)$ $C11-C12$ $1.326 (2)$ $C12-H12$ $1.455 (2)$ $C13-H13$ $1.428 (2)$ $C14-H14A$

C2—C5	1.417 (2)	C14—H14B	0.9800
C2—C3	1.432 (2)	C14—H14C	0.9800
C3—C4	1.491 (2)	C15—H15A	0.9800
C4—H4A	0.9800	C15—H15B	0.9800
C4—H4B	0.9800	C15—H15C	0.9800
C4—H4C	0.9800		
O2 ⁱ —Ni1—O2	180.0	O2—C5—C6	116.45 (15)
O2 ⁱ —Ni1—O1 ⁱ	90.81 (5)	C2—C5—C6	120.89 (15)
O2—Ni1—O1 ⁱ	89.19 (5)	С5—С6—Н6А	109.5
O2 ⁱ —Ni1—O1	89.19 (5)	С5—С6—Н6В	109.5
O2—Ni1—O1	90.81 (5)	H6A—C6—H6B	109.5
O1 ⁱ —Ni1—O1	180.0	С5—С6—Н6С	109.5
O2 ⁱ —Ni1—O3 ⁱ	90.17 (5)	Н6А—С6—Н6С	109.5
O2—Ni1—O3 ⁱ	89.84 (5)	Н6В—С6—Н6С	109.5
O1 ⁱ —Ni1—O3 ⁱ	88.50 (5)	C12—C7—C8	119.80 (16)
O1—Ni1—O3 ⁱ	91.50 (5)	C12—C7—N1	118.86 (15)
O2 ⁱ —Ni1—O3	89.83 (5)	C8—C7—N1	121.32 (15)
O2—Ni1—O3	90.16 (5)	C9—C8—C7	119.33 (16)
O1 ⁱ —Ni1—O3	91.50 (5)	С9—С8—Н8	120.3
O1—Ni1—O3	88.50 (5)	С7—С8—Н8	120.3
O3 ⁱ —Ni1—O3	179.999 (1)	C8—C9—C10	121.12 (17)
C1—O1—Ni1	118.40 (11)	С8—С9—Н9	119.4
C5—O2—Ni1	127.18 (11)	С10—С9—Н9	119.4
C13—O3—Ni1	121.20 (11)	С11—С10—С9	118.91 (17)
C1—N1—N2	112.16 (14)	C11—C10—H10	120.5
C1—N1—C7	130.19 (14)	C9—C10—H10	120.5
N2—N1—C7	117.63 (14)	C10-C11-C12	120.87 (17)
C3—N2—N1	105.38 (14)	C10-C11-H11	119.6
C13—N3—C14	120.62 (15)	C12—C11—H11	119.6
C13—N3—C15	122.03 (15)	C11—C12—C7	119.92 (17)
C14—N3—C15	117.34 (14)	C11—C12—H12	120.0
01—C1—N1	123.46 (15)	C7—C12—H12	120.0
O1—C1—C2	131.43 (16)	O3—C13—N3	123.95 (16)
N1—C1—C2	105.10 (14)	O3—C13—H13	118.0
C5—C2—C1	123.45 (16)	N3—C13—H13	118.0
C5—C2—C3	131.18 (16)	N3—C14—H14A	109.5
C1—C2—C3	105.17 (14)	N3—C14—H14B	109.5
N2—C3—C2	112.18 (15)	H14A—C14—H14B	109.5
N2—C3—C4	118.10 (16)	N3—C14—H14C	109.5
C2—C3—C4	129.68 (16)	H14A—C14—H14C	109.5
С3—С4—Н4А	109.5	H14B—C14—H14C	109.5
C3—C4—H4B	109.5	N3—C15—H15A	109.5
H4A—C4—H4B	109.5	N3—C15—H15B	109.5
C3—C4—H4C	109.5	H15A—C15—H15B	109.5
Н4А—С4—Н4С	109.5	N3—C15—H15C	109.5
H4B—C4—H4C	109.5	H15A—C15—H15C	109.5

supplementary materials

O2—C5—C2	122.64 (15)	H15B—C15—H15C	109.5
O2 ⁱ —Ni1—O1—C1	-156.12 (12)	N1—N2—C3—C2	0.82 (19)
O2—Ni1—O1—C1	23.88 (12)	N1—N2—C3—C4	178.73 (15)
01 ⁱ —Ni1—O1—C1	20 (22)	C5—C2—C3—N2	-175.27 (17)
O3 ⁱ —Ni1—O1—C1	113.74 (12)	C1—C2—C3—N2	-0.32 (19)
O3—Ni1—O1—C1	-66.26 (12)	C5—C2—C3—C4	7.1 (3)
02 ⁱ —Ni1—O2—C5	97 (5)	C1—C2—C3—C4	-177.93 (17)
O1 ⁱ —Ni1—O2—C5	157.07 (13)	Ni1—O2—C5—C2	10.4 (2)
O1—Ni1—O2—C5	-22.93 (13)	Ni1—O2—C5—C6	-171.37 (10)
O3 ⁱ —Ni1—O2—C5	-114.44 (13)	C1—C2—C5—O2	8.4 (3)
O3—Ni1—O2—C5	65.57 (13)	C3—C2—C5—O2	-177.46 (16)
O2 ⁱ —Ni1—O3—C13	-39.74 (12)	C1—C2—C5—C6	-169.79 (15)
O2—Ni1—O3—C13	140.26 (12)	C3—C2—C5—C6	4.4 (3)
O1 ⁱ —Ni1—O3—C13	51.07 (13)	C1—N1—C7—C12	-154.26 (17)
O1—Ni1—O3—C13	-128.93 (13)	N2—N1—C7—C12	23.8 (2)
O3 ⁱ —Ni1—O3—C13	82 (18)	C1—N1—C7—C8	26.9 (3)
C1—N1—N2—C3	-1.06 (18)	N2—N1—C7—C8	-155.00 (15)
C7—N1—N2—C3	-179.46 (14)	C12—C7—C8—C9	-2.4 (2)
Ni1—O1—C1—N1	164.19 (12)	N1—C7—C8—C9	176.44 (15)
Ni1—O1—C1—C2	-16.5 (2)	C7—C8—C9—C10	0.7 (2)
N2—N1—C1—O1	-179.70 (14)	C8—C9—C10—C11	1.3 (3)
C7—N1—C1—O1	-1.6 (3)	C9—C10—C11—C12	-1.6 (3)
N2—N1—C1—C2	0.86 (18)	C10-C11-C12-C7	0.0 (3)
C7—N1—C1—C2	179.00 (16)	C8—C7—C12—C11	2.0 (2)
O1—C1—C2—C5	-4.3 (3)	N1-C7-C12-C11	-176.81 (15)
N1—C1—C2—C5	175.11 (15)	Ni1—O3—C13—N3	172.39 (12)
O1—C1—C2—C3	-179.71 (17)	C14—N3—C13—O3	0.4 (3)
N1—C1—C2—C3	-0.33 (17)	C15—N3—C13—O3	179.29 (16)
Symmetry codes: (i) $-x+1, -y+2, -z+1$.			

Fig. 1

Fig.	2
• •5•	-

